Assoc. Prof. Dr. Mahdi Abdollahi | Smart Materials | Best Researcher Award
Assoc. Prof. Dr. Mahdi Abdollahi | Smart Materials – Academic Staff at Tarbiat Modares University, Iran
Dr. Mahdi Abdollahi is an accomplished Associate Professor in the Department of Polymer Reaction Engineering at Tarbiat Modares University. Renowned for his expertise in polymer chemistry and engineering, Dr. Abdollahi has consistently contributed to the advancement of polymer research through both theoretical and applied investigations. His academic career spans nearly two decades, marked by notable achievements in radical polymerization kinetics, nanocomposite synthesis, and high-performance material development. He is recognized by peers for his precision in experimental design, commitment to academic excellence, and impactful mentorship of emerging scientists.
Profile Verified:
ORCID
Scopus
Google Scholar
Education:
Dr. Abdollahi began his academic journey with a Bachelor’s degree in Applied Chemistry, followed by a Master’s degree in Polymer Science and Technology. His Ph.D. in Chemical Engineering with a focus on Polymer Engineering was earned from Tarbiat Modares University in 2009. His doctoral dissertation centered on Atom Transfer Radical Polymerization (ATRP) and its interplay with layered nano-silicates—an advanced and multidisciplinary topic that positioned him at the forefront of polymer synthesis and nanotechnology integration.
Experience:
Dr. Abdollahi’s professional experience bridges both academic and industrial sectors. From 2006 to 2011, he served at the Research Institute of Petroleum Industry (RIPI), contributing to polymer application and synthesis groups. Since 2011, he has held a faculty position at Tarbiat Modares University, where he is involved in teaching, supervising graduate research, and leading scientific projects. His dual exposure to academia and applied research has allowed him to maintain a practical outlook while pursuing theoretical advancements in polymer chemistry.
Research Interests:
His primary research interests lie in emulsion and miniemulsion polymerization, kinetic studies of homo- and co-polymerizations using nuclear magnetic resonance (NMR), and the development of polymer/clay nanocomposites. Dr. Abdollahi is particularly interested in controlled/living radical polymerization techniques such as ATRP, which enable the design of tailored macromolecular architectures. He also explores chemical modifications of natural polymers for use in energy and petroleum sectors, including fluid loss control and enhanced oil recovery (EOR). In recent years, he has ventured into the synthesis of polymers for high-temperature proton exchange membrane (HTPEM) fuel cells, reflecting his commitment to sustainable and high-performance materials.
Awards:
While formal award listings are not included in the profile, Dr. Abdollahi’s research impact, reflected in his citation record and long-term academic appointments, suggests consistent recognition within the scientific community. His leadership in advanced polymer studies and his publication record position him as a strong contender for awards acknowledging outstanding research in engineering and materials science.
Publications:
📘 “Kinetic Study of Radical Polymerization III: Solution Polymerization of Acrylamide by 1H-NMR” (J. Appl. Polym. Sci., 2004) – cited for its contribution to understanding polymerization kinetics in aqueous systems.
📗 “Effect of Carboxylic Acid Monomer Type on Particle Nucleation and Growth in Emulsifier-Free Emulsion Copolymerization of Styrene-Carboxylic Acid Monomer” (Polymer Journal, 2007) – recognized for advancing eco-friendly emulsion techniques.
📙 “Structure and Mechanical Properties of Carboxylated Styrene-Butadiene/Clay Nanocomposites” (e-Polymers, 2007) – highly cited for its implications in tire and sealant industries.
📕 “A New Simple Procedure to Calculate Monomer Reactivity Ratios Using 1H-NMR Kinetic Experiments” (Polymer, 2007) – a methodological innovation often referenced in kinetic modeling.
📘 “Kinetic Study of Radical Polymerization: VIII. Solution Copolymerization of Vinyl Acetate and Methyl Acrylate by 1H-NMR” (J. Macromol. Sci. A, 2007) – cited in polymer design strategies.
📗 “Kinetic Study of ATRP of Methyl Acrylate and Methyl Methacrylate with Poly(vinyl acetate) Telomers” (J. Macromol. Sci. A, 2007) – instrumental in advancing ATRP mechanisms.
📙 “Using 1H-NMR for Kinetic Study of Copolymerization of Styrene and Ethyl Acrylate” (J. Appl. Polym. Sci., 2007) – frequently cited for its precision and applicability in reactive systems.
Conclusion:
Dr. Mahdi Abdollahi exemplifies the qualities of a leading researcher in polymer science. His integration of kinetic theory, experimental chemistry, and nanotechnology has enriched the understanding of radical polymerization and functional material design. His prolific publication record, emphasis on industrial applicability, and dedication to academic mentorship reflect a career committed to scientific excellence. As an award nominee, Dr. Abdollahi represents a model of research integrity, innovation, and long-term impact in chemical engineering and polymer science. His selection for the Best Researcher Award would honor a trajectory defined by depth, diligence, and demonstrable scientific contribution.