Dr. Heraiz Hocine | Environmental Science | Best Researcher Award

Dr. Heraiz Hocine | Environmental Science | Best Researcher Award

Dr. Heraiz Hocine | Environmental Science – PhD at University of Science and Technology Beijing, China

Dr. Hocine Heraiz is an accomplished researcher in the field of Mineral Processing Engineering, with a focus on sustainable construction materials and the recycling of industrial solid waste into high-performance cementitious systems. He is currently completing his Ph.D. at the University of Science and Technology Beijing, where his pioneering work in Ultra-High-Performance Concrete (UHPC) has drawn international attention for its environmental significance and engineering innovation. Dr. Heraiz brings a multidisciplinary approach to his research, integrating expertise in materials science, mining engineering, and sustainable construction to address some of the most pressing challenges in global infrastructure and environmental protection.

Profile Verified:

ORCID | Scopus | Google Scholar

Education:

Dr. Heraiz’s academic foundation spans multiple disciplines and countries. He obtained his engineering degree in Mining Engineering from the National Polytechnic School in Algeria, focusing on blasting plan optimization and geotechnical analysis. He later completed a Master’s degree in Material Science at the University of M’Sila, where he investigated the mechanical and physicochemical properties of palm fiber composites, with an emphasis on sustainable reinforcement and the use of Artificial Neural Networks. Currently, he is pursuing a Ph.D. in Mineral Processing Engineering at the University of Science and Technology Beijing. His doctoral research involves the development of solid waste-based UHPC using steel fibers and clinker-free binders to enhance mechanical properties while promoting sustainability.

Experience:

Dr. Heraiz has accumulated diverse professional experience across academia, industry, and government institutions. He served as an Associate Professor at the University of M’Sila, where he contributed to teaching and mentoring in the field of materials engineering. In the private sector, he worked as a mining engineer, leading aggregate extraction operations and managing safety, compliance, and efficiency in day-to-day activities. As a site manager for a national construction company, he led a team of 25 workers, coordinated engineering workflows, and enforced strict quality and safety standards. His recent administrative and technical role at the Embassy of Algeria in China demonstrates his capacity for leadership and cross-cultural collaboration in complex environments.

Research Interest:

Dr. Heraiz’s research interests are centered on the reuse of industrial solid waste for sustainable building materials, particularly in developing Ultra-High-Performance Concrete. His studies cover the mechanical behavior, durability, and microstructural characteristics of these materials using advanced techniques such as XRD, SEM, FTIR, and TGA-DSC. He is especially interested in reducing CO₂ emissions in cement-based construction by using steel fibers, mineral admixtures, and industrial by-products. Additionally, his research integrates data modeling and optimization techniques, including Artificial Neural Networks and Response Surface Methodology, for predictive analysis of composite performance.

Award:

Dr. Heraiz was awarded the Silver Prize in the “Challenge Cup” International Entrepreneurship Competition in 2024, under the Belt and Road Initiative track. His winning project, Cotton Silk Road, focused on innovative cotton processing technologies and the use of solid waste in green development. In addition, he plays an active role in national research projects in China, including a National Key R&D Program on enhancing the resilience of municipal systems, and a Hebei Provincial Science and Technology Project on developing ultra-low carbon cementitious materials. These accolades highlight his leadership, innovation, and contribution to sustainable engineering solutions.

Publication:


🔹 Optimization of Ultra-High-Performance Concrete Using a Clinker-Free Binder and Iron Mine Tailings Aggregate (🧱 Minerals, 2024) — widely cited in green construction studies.

🔹 Examining the bending test properties of bio-composites strengthened with fibers through a combination of experimental and modeling approaches

🔹 Assessment of Mechanical and Physicochemical Properties of Palm Fiber Composites (🌿 Journal of Composite Materials, 2024) — cited in natural fiber reinforcement studies.

Conclusion:

In conclusion, Dr. Hocine Heraiz exemplifies a forward-thinking and solution-oriented researcher whose work merges scientific rigor with real-world relevance. His achievements in developing sustainable construction materials, backed by practical field experience and academic excellence, position him as a standout figure in the global movement toward eco-friendly infrastructure. Through innovative research, award-winning contributions, and strong academic publishing, Dr. Heraiz has proven his merit as a leading candidate for the Best Researcher Award. His work not only advances the state of materials engineering but also supports international sustainability goals and circular economy practices.

 

 

 

Dr. Xiaoyu Lin | Environmental Science | Best Researcher Award

Dr. Xiaoyu Lin | Environmental Science | Best Researcher Award

Dr. Xiaoyu Lin | Environmental Science – Huazhong University of Science and Technology, China

Dr. Xiaoyu Lin is an accomplished researcher affiliated with Jeonbuk National University in South Korea, known for her interdisciplinary work at the intersection of materials science, environmental chemistry, and computational modeling. Her scientific output, reflected in 18 peer-reviewed publications and an h-index of 11, has attracted 284 citations across 228 academic documents, indicating a growing influence in her field. With a firm grounding in theoretical and applied research methodologies, Dr. Lin continuously explores innovative ways to solve pressing industrial and ecological challenges, particularly in the area of sustainable material design and resource recovery.

Profile:

Scopus

Education:

Dr. Lin’s educational background is firmly rooted in scientific inquiry and advanced research. She completed her doctoral-level education with a focus on the application of density functional theory (DFT) to design environmentally responsive materials. Her academic training provided a strong foundation in physical chemistry, polymer science, and environmental remediation, equipping her with both theoretical expertise and practical laboratory skills essential to the development of advanced functional materials.

Experience:

Professionally, Dr. Lin is based at Jeonbuk National University, where she plays an active role in research and academic collaboration. Her experience includes significant contributions to both individual and group research projects, showcasing her capabilities in multidisciplinary teamwork and scientific communication. She has authored and co-authored numerous high-impact papers, collaborating with researchers across multiple countries and disciplines. Through this work, she has helped shape experimental designs, conduct theoretical modeling, and produce valuable findings for publication.

Research Interests:

Dr. Lin’s research interests span computational materials science, bio-based adsorbents, environmental sustainability, and metal ion recovery. She is particularly passionate about combining DFT simulations with experimental synthesis to develop materials capable of selective ion adsorption, pH responsiveness, and environmental remediation. Her focus on sustainable solutions and circular economy principles drives her investigations into chitosan-based biopolymers, eco-friendly adsorbents, and advanced modeling techniques for wastewater treatment and heavy metal removal.

Awards:

While Dr. Lin has not yet received formal individual awards, her rising academic profile and publication impact suggest she is on a clear trajectory toward national and international recognition. Her growing number of citations, scholarly collaborations, and recent involvement in high-impact research projects reflect the respect she commands within the research community and signal her readiness for future distinctions such as the Best Researcher Award.

Publications:

Below are seven of Dr. Lin’s most relevant publications, highlighting both academic contribution and citation performance:

  • 🧪 “DFT-guided structural design of functionalized chitosan for selective Ag(I) recovery across a broad pH range”, Separation and Purification Technology, 2025 – cited by 0 articles.
  • 🌱 “Selective removal of Pb(II) using cross-linked chitosan derivatives: Adsorption behavior and DFT insights”, Chemical Engineering Journal, 2024 – cited by 12 articles.
  • ⚙️ “Computational screening of bio-polymers for heavy metal remediation: A DFT-based approach”, Journal of Hazardous Materials, 2023 – cited by 18 articles.
  • 🌊 “pH-responsive chitosan composites for wastewater treatment: Synthesis, characterization and modeling”, Environmental Science and Pollution Research, 2023 – cited by 15 articles.
  • 🔬 “Eco-friendly synthesis of chitosan beads for Cr(VI) removal: Experimental and theoretical synergy”, Carbohydrate Polymers, 2022 – cited by 20 articles.
  • 🧬 “Metal ion recognition by modified polysaccharides: A DFT and FTIR combined study”, Materials Chemistry and Physics, 2022 – cited by 14 articles.
  • 💧 “Biopolymer-based systems for Cu(II) adsorption: Modeling and application perspectives”, Journal of Molecular Liquids, 2021 – cited by 13 articles.

Conclusion:

In conclusion, Dr. Xiaoyu Lin has built an impressive academic profile through impactful research, interdisciplinary collaboration, and a commitment to sustainable innovation. Her publications demonstrate a mastery of both theoretical modeling and experimental application, and her growing citation record indicates strong peer recognition. As an emerging leader in the field of materials for environmental applications, she represents an outstanding candidate for the Best Researcher Award. With further opportunities for research funding and leadership, she is well-positioned to make long-lasting contributions to science and society.