Weihong Gao | Thermoelectrical Materials | Best Researcher Award

Assoc. Prof. Dr. Weihong Gao | Thermoelectrical Materials | Best Researcher Award

Assoc. Prof. Dr. Weihong Gao | Thermoelectrical Materials – Associate professor at Harbin Engineering University College, China

Professor Weihong Gao is an acclaimed expert in the field of materials science, with a strong research emphasis on thermoelectric materials, microstructure design, and shape memory alloys. She is a faculty member at the School of Materials Science and Chemical Engineering at Harbin Engineering University. Her academic footprint is recognized internationally through over 2,000 citations, influential publications, and impactful scientific collaborations. Her research is dedicated to developing next-generation energy materials, making her a key contributor to advancing sustainable technology and energy conversion systems. Her innovative mindset and scholarly achievements make her a standout candidate for the Best Researcher Award.

Professional Profile:

ORCID

Scopus

Google Scholar

🎓 Education:

Professor Gao’s academic journey is rooted in advanced materials science and engineering. Her formal education includes comprehensive training in physical metallurgy, thermoelectric material design, and functional alloys. Through a structured academic and research trajectory, she built a solid foundation in understanding the relationship between microstructure and material performance. Her education not only provided her with scientific rigor but also shaped her approach to multidisciplinary problem-solving, which remains a defining aspect of her research methodology today.

🧪 Experience:

With over a decade of intensive research experience, Professor Gao has led and participated in numerous scientific investigations on thermoelectricity, phase transformation, and alloy mechanics. At Harbin Engineering University, she has contributed to both theoretical advancement and practical development of smart materials. She has also played a significant role in supervising graduate researchers, developing academic programs, and fostering international collaborations. Her expertise extends to interfacial analysis and nanostructuring—two critical areas that have defined her scientific output. Her research projects often blend materials chemistry, solid-state physics, and engineering design.

🔬 Research Interest:

Professor Gao’s research interests lie at the intersection of energy science and material innovation. She focuses on enhancing the performance of thermoelectric materials for power generation and cooling applications, particularly at low temperatures. Her work investigates the optimization of electrical and thermal conductivity through advanced doping, nanostructuring, and crystal engineering. Additionally, she explores the properties and phase transitions of shape memory alloys like Ti-Ni-Hf, aiming to improve their mechanical strength and recovery behavior. Her interests reflect a commitment to both foundational discovery and application-driven innovation in smart materials.

🏆 Award:

Though specific accolades may remain undisclosed, Professor Gao’s academic metrics stand as a testament to her scholarly impact: with over 2,095 citations, an h-index of 23, and an i10-index of 41, her research resonates strongly across the global materials science community. Her work is regularly published in elite journals and frequently cited by peers, reflecting high relevance and credibility. These achievements form a solid basis for her nomination for the Best Researcher Award and affirm her consistent contribution to scientific excellence and research leadership.

📚 Publications:

  • “Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg₃Sb₂/MgAgSb module for low-temperature energy harvesting” 🌡️ – Joule, 2021 – Cited by 346 articles
  • “Maximizing the performance of n-type Mg₃Bi₂ based materials for room-temperature power generation” ⚙️ – Nature Communications, 2022 – Cited by 237 articles
  • “High power factor and enhanced thermoelectric performance in Sc and Bi codoped GeTe” 🔋 – Advanced Energy Materials, 2020 – Cited by 114 articles
  • “Challenges for thermoelectric power generation: from a material perspective” 🔍 – Materials Lab, 2022 – Cited by 99 articles
  • “Mechanical properties of nanostructured thermoelectric materials α-MgAgSb” 🧪 – Scripta Materialia, 2017 – Cited by 95 articles
  • “Extraordinary thermoelectric performance in AgSbSe₂ with ultralow thermal conductivity” 💡 – ACS Applied Materials & Interfaces, 2018 – Cited by 65 articles
  • “Improved thermoelectric performance of GeTe via efficient yttrium doping” 🔧 – Applied Physics Letters, 2021 – Cited by 36 articles

🧾 Conclusion:

Professor Weihong Gao exemplifies the qualities of a leading researcher: scientific vision, innovation, and consistent impact. Her dedication to developing high-efficiency materials for energy applications is both timely and transformative. Her record of publication, mentorship, and interdisciplinary integration positions her as a compelling nominee for the Best Researcher Award. By continuing to explore the frontiers of material science and engineering, Professor Gao not only advances academic excellence but also contributes meaningfully to global technological progress. Her work bridges science and sustainability, marking her as a trailblazer in the next generation of research leaders.

 

 

 

Dr. Heraiz Hocine | Environmental Science | Best Researcher Award

Dr. Heraiz Hocine | Environmental Science | Best Researcher Award

Dr. Heraiz Hocine | Environmental Science – PhD at University of Science and Technology Beijing, China

Dr. Hocine Heraiz is an accomplished researcher in the field of Mineral Processing Engineering, with a focus on sustainable construction materials and the recycling of industrial solid waste into high-performance cementitious systems. He is currently completing his Ph.D. at the University of Science and Technology Beijing, where his pioneering work in Ultra-High-Performance Concrete (UHPC) has drawn international attention for its environmental significance and engineering innovation. Dr. Heraiz brings a multidisciplinary approach to his research, integrating expertise in materials science, mining engineering, and sustainable construction to address some of the most pressing challenges in global infrastructure and environmental protection.

Profile Verified:

ORCID | Scopus | Google Scholar

Education:

Dr. Heraiz’s academic foundation spans multiple disciplines and countries. He obtained his engineering degree in Mining Engineering from the National Polytechnic School in Algeria, focusing on blasting plan optimization and geotechnical analysis. He later completed a Master’s degree in Material Science at the University of M’Sila, where he investigated the mechanical and physicochemical properties of palm fiber composites, with an emphasis on sustainable reinforcement and the use of Artificial Neural Networks. Currently, he is pursuing a Ph.D. in Mineral Processing Engineering at the University of Science and Technology Beijing. His doctoral research involves the development of solid waste-based UHPC using steel fibers and clinker-free binders to enhance mechanical properties while promoting sustainability.

Experience:

Dr. Heraiz has accumulated diverse professional experience across academia, industry, and government institutions. He served as an Associate Professor at the University of M’Sila, where he contributed to teaching and mentoring in the field of materials engineering. In the private sector, he worked as a mining engineer, leading aggregate extraction operations and managing safety, compliance, and efficiency in day-to-day activities. As a site manager for a national construction company, he led a team of 25 workers, coordinated engineering workflows, and enforced strict quality and safety standards. His recent administrative and technical role at the Embassy of Algeria in China demonstrates his capacity for leadership and cross-cultural collaboration in complex environments.

Research Interest:

Dr. Heraiz’s research interests are centered on the reuse of industrial solid waste for sustainable building materials, particularly in developing Ultra-High-Performance Concrete. His studies cover the mechanical behavior, durability, and microstructural characteristics of these materials using advanced techniques such as XRD, SEM, FTIR, and TGA-DSC. He is especially interested in reducing CO₂ emissions in cement-based construction by using steel fibers, mineral admixtures, and industrial by-products. Additionally, his research integrates data modeling and optimization techniques, including Artificial Neural Networks and Response Surface Methodology, for predictive analysis of composite performance.

Award:

Dr. Heraiz was awarded the Silver Prize in the “Challenge Cup” International Entrepreneurship Competition in 2024, under the Belt and Road Initiative track. His winning project, Cotton Silk Road, focused on innovative cotton processing technologies and the use of solid waste in green development. In addition, he plays an active role in national research projects in China, including a National Key R&D Program on enhancing the resilience of municipal systems, and a Hebei Provincial Science and Technology Project on developing ultra-low carbon cementitious materials. These accolades highlight his leadership, innovation, and contribution to sustainable engineering solutions.

Publication:


🔹 Optimization of Ultra-High-Performance Concrete Using a Clinker-Free Binder and Iron Mine Tailings Aggregate (🧱 Minerals, 2024) — widely cited in green construction studies.

🔹 Examining the bending test properties of bio-composites strengthened with fibers through a combination of experimental and modeling approaches

🔹 Assessment of Mechanical and Physicochemical Properties of Palm Fiber Composites (🌿 Journal of Composite Materials, 2024) — cited in natural fiber reinforcement studies.

Conclusion:

In conclusion, Dr. Hocine Heraiz exemplifies a forward-thinking and solution-oriented researcher whose work merges scientific rigor with real-world relevance. His achievements in developing sustainable construction materials, backed by practical field experience and academic excellence, position him as a standout figure in the global movement toward eco-friendly infrastructure. Through innovative research, award-winning contributions, and strong academic publishing, Dr. Heraiz has proven his merit as a leading candidate for the Best Researcher Award. His work not only advances the state of materials engineering but also supports international sustainability goals and circular economy practices.